Flt-3 ligand synergizes with granulocyte colony-stimulating factor to increase neutrophil numbers and to mobilize peripheral blood stem cells with long-term repopulating potential.
نویسندگان
چکیده
Flt-3 ligand (FL) shares many features with stem cell factor (SCF), a widely documented cofactor for peripheral blood progenitor cell (PBPC) mobilization. We investigated the mobilization of PBPCs by FL in combination with granulocyte colony-stimulating factor (G-CSF). As a single agent, FL was a relatively modest mobilizer of PBPCs, resulting in 360 granulocyte/macrophage colony-forming cells (GM-CFCs)/mL blood (control, 155 GM-CFCs/mL blood) and no advantage in leukocyte recovery when these PBPCs were transplanted to irradiated recipient mice. G-CSF, on the other hand, mobilized over 20,000 GM-CFCs/mL blood, and the combination of G-CSF + FL resulted in over 100,000 GM-CFCs/mL blood. The combination of G-CSF + FL stimulated increased levels of monocytes and basophils in the peripheral blood. The performance of the mobilized PBPC product in irradiated hosts correlated with progenitor numbers resulting in long-term engraftment in association with accelerated short-term recovery of both leukocytes and platelets. These data demonstrate the potential of FL to synergize with G-CSF to mobilize PBPCs with both short- and long-term engraftment potential. The effect is similar to the synergistic interaction of G-CSF and SCF on PBPC mobilization. The use of FL as opposed to SCF may elicit a different spectrum of toxicities including lymphoid proliferation effects, in contrast to the mast cell degranulation effects of SCF. Clinical studies of FL are needed to evaluate its usefulness in man.
منابع مشابه
Recombinant Rat Stem Cell Factor Synergizes With Recombinant Human Granulocyte Colony-Stimulating Factor In Vivo in Mice to Mobilize Peripheral Blood Progenitor Cells That Have Enhanced Repopulating Potential
Splenectomized mice treated for 7 days with pegylated recombinant rat stem cell factor (rrSCF-PEG) showed a dosedependent increase in peripheral blood progenitor cells (PBPC) that have enhanced in vivo repopulating potential. A dose of rrSCF-PEG at 25 pg/kg/d for 7 days produced no significant increase in PBPC. However, when this dose of rrSCF-PEG was combined with an optimal dose of recombinan...
متن کاملRecombinant rat stem cell factor synergizes with recombinant human granulocyte colony-stimulating factor in vivo in mice to mobilize peripheral blood progenitor cells that have enhanced repopulating potential.
Splenectomized mice treated for 7 days with pegylated recombinant rat stem cell factor (rrSCF-PEG) showed a dose-dependent increase in peripheral blood progenitor cells (PBPC) that have enhanced in vivo repopulating potential. A dose of rrSCF-PEG at 25 micrograms/kg/d for 7 days produced no significant increase in PBPC. However, when this dose of rrSCF-PEG was combined with an optimal dose of r...
متن کاملAdvances in Hematopoietic Stem Cell Mobilization and Peripheral Blood Stem Cell Transplantation
Hematopoietic stem/progenitor cells (HSPCs) which give rise to different blood cell types are present within the bone marrow microenvironment, especially in flat bones such as skull, vertebrae, pelvis and chest. Interacting factors such as stromal derived factor-1/CXCR4, very late antigen-4/vascular cell adhesion molecule-1, Lymphocyte function-associated antigen-1/ intercellular adhesion molec...
متن کاملFlt3 ligand synergizes with granulocyte-macrophage colony-stimulating factor or granulocyte colony-stimulating factor to mobilize hematopoietic progenitor cells into the peripheral blood of mice.
Peripheral blood progenitor cells (PBPC) are increasingly being used in the clinic as a replacement for bone marrow (BM) in the transplantation setting. We investigated the capacity of several different growth factors, including human flt3 ligand (FL), alone and in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF ) or granulocyte colony-stimulating factor (G-CSF ), to m...
متن کاملThe granulocyte colony-stimulating factor receptor is required for the mobilization of murine hematopoietic progenitors into peripheral blood by cyclophosphamide or interleukin-8 but not flt-3 ligand.
Hematopoietic progenitor cells (HPC) can be mobilized from the bone marrow into the peripheral circulation in response to a number of stimuli including hematopoietic growth factors, cytotoxic agents, and certain chemokines. Despite significant differences in their biological activities, these stimuli result in the mobilization of HPC with a similar phenotype, suggesting that a common mechanism ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 89 11 شماره
صفحات -
تاریخ انتشار 1997